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Fig. 1: Our proposed framework, BEAMDOJO, enables agile and robust humanoid locomotion across challenging sparse footholds. Top
Row: Utilizing global mapping information from LiDAR, the humanoid demonstrates the ability to precisely traverse both forward and
backward on stepping stones, with arrows indicating the direction of movement. Bottom Left: The humanoid skillfully traverses a narrow
balance beam. Bottom Middle: Despite being trained without exposure to gaps and balancing beams, the humanoid achieves zero-shot
generalization to various sparse foothold terrains. Bottom Right: Humanoid exhibits remarkable robustness, maintaining stable locomotion
under external disturbances and additional payloads.

Abstract—Traversing risky terrains with sparse footholds poses
a significant challenge for humanoid robots, requiring precise foot
placements and stable locomotion. Existing approaches designed
for quadrupedal robots often fail to generalize to humanoid
robots due to differences in foot geometry and unstable morphol-
ogy, while learning-based approaches for humanoid locomotion
still face great challenges on complex terrains due to sparse
foothold reward signals and inefficient learning processes. To
address these challenges, we introduce BEAMDOJO, a rein-
forcement learning (RL) framework designed for enabling agile
humanoid locomotion on sparse footholds. BEAMDOJO begins
by introducing a sampling-based foothold reward tailored for
polygonal feet, along with a double critic to balancing the learning
process between dense locomotion rewards and sparse foothold
rewards. To encourage sufficient trail-and-error exploration,
BEAMDOJO incorporates a two-stage RL approach: the first
stage relaxes the terrain dynamics by training the humanoid
on flat terrain while providing it with task terrain perceptive
observations, and the second stage fine-tunes the policy on
the actual task terrain. Moreover, we implement a onboard

LiDAR-based elevation map to enable real-world deployment.
Extensive simulation and real-world experiments demonstrate
that BEAMDOJO achieves efficient learning in simulation and
enables agile locomotion with precise foot placement on sparse
footholds in the real world, maintaining a high success rate even
under significant external disturbances.

I. INTRODUCTION

Traversing risky terrains with sparse footholds, such as
stepping stones and balancing beams, presents a significant
challenge for legged locomotion. Achieving agile and safe
locomotion on such environment requires robots to accurately
process perceptive information, make precise footstep place-
ment within safe areas, and maintain base stability throughout
the process [46, 49].

Existing works have effectively addressed this complex task
for quadrupedal robots [11, 12, 21, 41, 46, 47, 49]. However,
these methods encounter great challenges when applied to
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humanoid robots, primarily due to a key difference in foot
geometry. Although the foot of most quadrupedal robots and
some simplified bipedal robots [6, 22] can be modeled as a
point, the foot of humanoid robots is often represented as a
polygon [4, 13, 18, 35]. For traditional model-based methods,
this requires additional half-space constraints defined by linear
inequalities, which impose a significant computational burden
for online planning [5, 13, 28, 35]. In the case of reinforcement
learning (RL) methods, foothold rewards designed for point-
shaped feet are not suitable for evaluating foot placement of
polygon-shaped feet [46]. Hybrid methods, which combine
RL with model-based controllers, face similar challenges in
online planning for humanoid feet [11, 21, 41]. Furthermore,
the higher degrees of freedom and the inherently unstable
morphology of humanoid robots make it even more difficult
to achieve agile and stable locomotion over risky terrains.

On the other hand, recent works in learning-based humanoid
robot locomotion have demonstrated impressive robustness
across walking [2, 15, 16, 32, 38], walking up and down
stairs [14, 25], and parkour [51], etc. However, these methods
still struggle with complex terrains and agile locomotion on
fine-grained footholds. Enabling agile movement on risky
terrains for humanoid robots presents several challenges. First,
the reward signal for evaluating foot placement is sparse,
typically provided only after completing a full sub-process
(e.g., lifting and landing a foot), which makes it difficult
to assign credit to specific states and actions [36]. Second,
the learning process is highly inefficient, as a single misstep
often leads to early termination during training, hindering
sufficient exploration. Additionally, obtaining reliable percep-
tual information is challenging due to sensory limitations and
environmental noise [51].

In this work, we introduce BEAMDOJO, a novel rein-
forcement learning-based framework for controlling humanoid
robots traversing risky terrains with sparse footholds. The
name BEAMDOJO combines the words “beam” (referring to
sparse footholds such as beams) and “dojo” (a place of training
or learning), reflecting the goal of training agile locomotion on
such challenging terrains. We begin by defining a sampling-
based foothold reward, designed to evaluate the foot placement
of a polygonal foot model. To address the challenge of sparse
foothold reward learning, we propose using double critic
architecture to separately learn the dense locomotion rewards
and the sparse foothold reward. Unlike typical end-to-end RL
methods [46, 49], BEAMDOJO further incorporates a two-stage
approach to encourage fully trial-and-error exploration. In the
first stage, terrain dynamics constraints are relaxed, allowing
the humanoid robot to practice walking on flat terrain while
receiving perceptive information of the target task terrain (e.g.,
sparse beams), where missteps will incur a penalty but do
not terminate the episode. In the second stage, the policy is
fine-tuned on the true task terrain. To enable deployment in
real-world scenarios, we further implement a LiDAR-based,
robot-centric elevation map with carefully designed domain
randomization in simulation training.

As shown in Fig. 1, BEAMDOJO skillfully enables hu-

manoid robots to traverse risky terrains with sparse footholds,
such as stepping stones and balancing beams. Through exten-
sive simulations and real-world experiments, we demonstrate
the efficient learning process of BEAMDOJO and its ability
to achieve agile locomotion with precise foot placements in
real-world scenarios.

The contributions of our work are summarized as follows:
• We propose BEAMDOJO, a two-stage RL framework

that combines a newly designed foothold reward for
the polygonal foot model and a double critic, enabling
humanoid locomotion on sparse footholds.

• We implement a LiDAR-based elevation map for real-
world deployment, incorporating carefully designed do-
main randomization in simulation training.

• We conduct extensive experiments both in simulation and
on Unitree G1 Humanoid, demonstrating agile and robust
locomotion on sparse footholds, with a high zero-shot
sim-to-real transfer success rate of 80%. To the best of
our knowledge, BEAMDOJO is the first learning-based
method to achieve fine-grained foothold control on risky
terrains with sparse footholds.

II. RELATED WORKS

A. Locomotion on Sparse Footholds

Walking on sparse footholds has been a long-standing
application of perceptive legged locomotion. Existing works
often employs model-based hierarchical controllers, which de-
compose this complex task into separate stages of perception,
planning, and control [12, 13, 20, 29, 30, 39]. However,
model-based controllers react sensitively to violation of model
assumptions, which hinders applications in real-world scenar-
ios. Recent studies have explored combining RL with model-
based controllers, such as using RL to generate trajectories
that are then tracked by model-based controllers [11, 47, 41],
or employing RL policies to track trajectories generated by
model-based planners [21]. While demonstrating remarkable
performance, these decoupled architectures can constrain the
adaptability and coordination of each module.

Subsequent works have explored end-to-end learning frame-
works that train robots to walk on sparse footholds using
perceptive locomotion controllers [1, 3, 45, 46, 49]. Despite
their focus being limited to quadrupeds, a majority of these
works rely on depth cameras for exteroceptive observations,
which are limited by the camera’s narrow field of view
and restrict the robot to moving backward [1, 3, 45, 46].
Additionally, an image processing module is often necessary to
bridge the sim-to-real gap between the captured depth images
and the terrain heightmap used during training [1, 3, 45, 46].

In contrast to the aforementioned literature, this work
achieves agile humanoid locomotion over risky terrains that
addressing unique challenges specific to humanoid systems,
such as foot geometry. Additionally, we implement a lidar-
based elevation map to enhance the task, demonstrating that
the robot can move smoothly both forward and backward using
the robotics-centric elevation map as the perception module.



Fig. 2: Foothold Reward. We sample n points under the foot. Green
points indicate contact with the surface within the safe region, while
red points represent those not in contact with the surface.

B. Reinforcement Learning in Locomotion Control

Reinforcement learning has been widely applied in legged
locomotion control [3, 17, 23, 24, 27, 31, 50], benefiting
from the policy update stability and high data efficiency pro-
vided by Proximal Policy Optimization (PPO) [34]. To adapt
learned policies to diverse target tasks and ensure hardware
deployability, previous works have designed two-stage training
frameworks that aim to bridge the sim-to-real gap in the obser-
vation space [23, 24]. In contrast, this work introduces a novel
two-stage training approach specifically aimed at improving
sample efficiency, particularly addressing the challenge of
early termination when walking on sparse terrains. This design
not only enhances performance but also ensures more efficient
learning in complex, real-world environments.

III. PROBLEM FORMULATION

This work aims to develop an terrain-aware humanoid loco-
motion policy, where controllers are trained via reinforcement
learning (RL). The RL problem is formulated as a Markov
Decision Process (MDP) M = ⟨S,A, T,O, r, γ⟩, where S
and A denote the state and action spaces, respectively. The
transition dynamics are represented by T (s′ |s, a), the reward
function by r(s, a), and the discount factor by γ ∈ [0, 1].
The primary objective is to optimize the policy π(at | st) to
maximize the discounted cumulative rewards:

max
π

J(M, π) = E

[ ∞∑
t=0

γtr(st, at)

]
. (1)

In this work, the agent only has access to partial obser-
vations o ∈ O due to sensory limitations and environmental
noise, which provide incomplete information about the true
state. Consequently, the agent functions within the framework
of a Partially Observable Markov Decision Process (POMDP).

IV. METHODS

A. Foothold Reward

To accommodate the polygonal foot model of the humanoid
robot, we introduce a sampling-based foothold reward that
evaluates foot placement on sparse footholds.This evaluation
is determined by the overlap between the foot’s placement and
designated safe areas, such as stones and beams. Specifically,
we sample n points on the soles of the robot’s feet, as

illustrated in Fig. 2. For each j-th sample on foot i, let dij
denotes the global terrain height at the corresponding position.
The penalty foothold reward rfoothold is defined as:

rfoothold = −
2∑

i=1

Ci

n∑
j=1

1{dij < ϵ}, (2)

where Ci is an indicator function that specifies whether foot
i is in contact with the terrain surface, and 1 is the indicator
function for a condition. The threshold ϵ is a predefined depth
tolerance, and when dij < ϵ, it indicates that the terrain
height at this sample point is significantly low, implying
improper foot placement outside of a safe area. This reward
function encourages the humanoid robot to maximize the
overlap between its foot placement and the safe footholds,
thereby improving its terrain-awareness capabilities.

B. Double Critic for Sparse Reward Learning

The task-specific foothold reward rfoothold is a sparse reward.
To effectively optimize the policy, it is crucial to carefully bal-
ance this sparse reward with dense locomotion rewards which
are crucial for gait regularization [48]. Inspired by [19, 42, 48],
we adopt a double critic framework based on PPO, which
effectively decouples the mixture of dense and sparse rewards.

In this framework, we train two separate critic networks,
{Vϕ1

, Vϕ2
}, to independently estimate value functions for two

distinct reward groups: (i) the regular locomotion reward group
(dense rewards), R1 = {ri}ni=0, which have been studied in
quadruped locomotion tasks [27] and humanoid locomotion
tasks [25], and (ii) the task-specific foothold reward group
(sparse reward), R2 = {rfoothold}.

The double critic process is illustrated in Fig. 3. Specifically,
each value network Vϕi

is updated independently for its
corresponding reward group Ri with temporal difference loss
(TD-loss):

L(ϕi) = E
[
∥Ri,t + γVϕi

(st+1)− Vϕi
(st)∥2

]
, (3)

where γ is the discount factor. Then the respective advantages
{Âi,t} are calculated using Generalized Advantage Estimation
(GAE) [33]:

δi,t = Ri,t + γVϕi
(st+1)− Vϕi

(st), (4)

Âi,t =

∞∑
l=0

(γλ)lδi,t+l, (5)

where λ is the balancing parameter. These advantages are
then individually normalized and synthesized into an overall
advantage:

Ât = w1 ·
Â1,t − µÂ1,t

σÂ1,t

+ w2 ·
Â2,t − µÂ2,t

σÂ2,t

, (6)

where wi is the weight for each advantage component, and
µÂi,t

and σÂi,t
are the batch mean and standard deviation of



Fig. 3: Overview of BEAMDOJO. (a) Training in Simulation: In stage 1, proprioceptive and perceptive information, locomotion rewards
and the foothold reward are decoupled respectively, with the former obtained from flat terrain and the latter from task terrain. The double
critic module separately learns two reward groups. In stage 2, the policy is fine-tuned on the task terrain, utilizing the full set of observations
and rewards. (b) Real-world deployment: The robot-centric elevation map, reconstructed using LiDAR data, is combined with proprioceptive
information to serve as the input for the actor.

each component. This overall advantage is then used to update
the policy:

L(θ) = E
[
min

(
αt(θ)Ât, clip(αt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

(7)
where αt(θ) is the probability ratio, and ϵ is the clipping
hyperparameter.

This double critic design provides a modular, plug-and-play
solution for handling specialized tasks with sparse rewards,
while effectively addressing the disparity in reward feedback
frequencies within a mixed dense-sparse environment [48].
The detailed reward terms are provided in Appendix VI-A.

C. Learning Terrain-Aware Locomotion via Two-Stage RL

To address the early termination problem in complex terrain
dynamics and encourage full trial-and-error exploration, we
adopt a two-stage reinforcement learning (RL) approach for
terrain-aware locomotion in simulation, inspired by [50, 51].
As illustrated in Fig. 3, in the first stage, termed the “soft
terrain dynamics constraints” phase, the humanoid robot is
trained on flat terrain while being provided with a correspond-
ing height map of the true task terrains (e.g., stepping stones).
This setup encourages broad exploration without the risk of
early termination from missteps. Missteps are penalized but do
not lead to termination, allowing the humanoid robot to de-
velop foundational skills for terrain-aware locomotion. In the
second stage, termed the “hard terrain dynamics constraints”
phase, we continue training the humanoid on the real terrains
in simulation, where missteps result in termination. This stage
fine-tunes the robot’s ability to step on challenging terrains
accurately.

1) Stage 1: Soft Terrain Dynamics Constraints Learning:
In this stage, we first map each task terrain (denoted as
T ) to a flat terrain (denoted as F) of the same size. Both
terrains share the same terrain noise, with points are one-to-
one corresponding. The only difference is that the flat terrain
F fills the gaps in the real terrain T .

We let the humanoid robot traverse the terrain F , receiving
proprioceptive observations, while providing perceptual feed-
back in the form of the elevation map of terrain T at the
corresponding humanoid’s base position. This setup allows the
robot to “imagine” walking on the true task terrain while actu-
ally traversing the safer flat terrain, where missteps do not lead
to termination. To expose the robot to real terrain dynamics,
we use the foothold reward (introduced in Section IV-A). In
this phase, this reward is provided by the terrain T , where dij
is the height of the true terrain at the sampling point, while
locomotion rewards are provided by the terrain F .

This design successfully decouples the standard locomotion
task and the task of traversing sparse footholds: flat terrain, F ,
provides proprioceptive information and locomotion rewards
to learn regular gaits, while risky task terrain, T , offers
perceptive information and the foothold reward to develop
terrain-awareness skills. We train these two reward compo-
nents separately using a double critic framework, as described
in Section IV-B.

Furthermore, by allowing the humanoid robot to traverse
the flat terrain while applying penalties for missteps instead
of terminating the episode, the robot can continuously at-
tempt foothold placements, making it much easier to obtain
successful positive samples. In contrast, conventional early
termination disrupts entire trajectories, making it extremely
difficult to acquire safe foothold samples when learning from



scratch. This approach significantly improves sampling effi-
ciency and alleviates the challenges of exploring terrains with
sparse footholds.

2) Stage 2: Hard Terrain Dynamics Constraints Learning:
In the second stage, we fine-tune the policy directly on the
task terrain T . Unlike in Stage 1, missteps on T now result in
immediate termination. This enforces strict adherence to the
true terrain constraints, requiring the robot to develop precise
and safe locomotion strategies.

To maintain a smooth gait and accurate foot placements, we
continue leveraging the double-critic framework to optimize
both locomotion rewards and the foothold reward rfoothold Here,
dij again represents the height of terrain T at the given
sampling point.

D. Training in Simulation

1) Observation Space and Action Space: The policy obser-
vations, denoted as ot, consist of four components:

ot =
[
ct,o

proprio
t ,opercept

t ,at−1

]
. (8)

The commands ct ∈ R3 specify the desired velocity, rep-
resented as

[
vc
x,v

c
y,ω

c
yaw

]
. These denote the linear velocities

in the longitudinal and lateral directions, and the angular ve-
locity in the horizontal plane, respectively. The proprioceptive
observations oproprio

t ∈ R64 include the base angular velocity
ωt ∈ R3, gravity direction in the robot’s frame gt ∈ R3,
joint positions θt ∈ R29, and joint velocities θ̇t ∈ R29.
The perceptive observations opercept

t ∈ R15×15 correspond to
an egocentric elevation map centered around the robot. This
map samples 15 × 15 points within a 0.1 m grid in both the
longitudinal and lateral directions. The action of last timestep
at−1 ∈ R12 is also included to provide temporal context.

The action at ∈ R12 represents the target joint positions
for the 12 lower-body joints of the humanoid robot, which are
directly output by the actor network. For the upper body joints,
the default position is used for simplicity. A proportional-
derivative (PD) controller converts these joint targets into
torques to track the desired positions.

2) Terrain and Curriculum Design: Inspired by [49, 46],
we design five types of sparse foothold terrains for the two-
stage training and evaluation:

• Stones Everywhere: This is a general sparse foothold
terrain where stones are scattered across the entire terrain.
The center of the terrain is a platform surrounded by
stones, as shown in Fig. 4(a). The stones are uniformly
distributed within sub-square grids. As the curriculum
progresses, the stone size decreases and the sparsity
increases.

• Stepping Stones: This terrain consists of two lines of
stepping stones in the longitudinal direction, connected
by two platforms at each end, as shown in Fig. 4(b). Each
stone is uniformly distributed in two sub-square grids,
with the same curriculum effect as in Stones Everywhere.

• Balancing Beams: In the initial curriculum level, this
terrain has two lines of separate stones in the longitudinal

Fig. 4: Terrain Setting in Simulation. (a) is used for stage 1 training,
while (b) and (c) are used for stage 2 training. The training terrain
progression is listed from simple to difficult. (b)-(e) are used for
evaluation.

direction. As the curriculum progresses, the size of the
stones decreases and their lateral distance reduces, even-
tually forming a single line of balancing beams, as shown
in Fig. 4(c). This terrain is challenging for the robot as it
must learn to keep its feet together on the beams without
colliding with each other, while maintaining the center
of mass. This requires a distinct gait compared to regular
locomotion tasks.

• Stepping Beams: This terrain consists of a sequence
of beams to step on, randomly distributed along the
longitudinal direction, with two platforms at either end,
as illustrated in Fig. 4(d). This terrain, along with the
Stones Everywhere and Stepping Stones terrains, requires
the robot to place its footholds with high precision.

• Gaps: This terrain consists of several gaps with random
distances between them, as shown in Fig. 4(e). This
terrain requires the robot to make large steps to cross
the gaps.

We begin by training the robot on the Stones Everywhere
terrain in Stage 1 with soft terrain constraints to develop a
generalizable policy. In Stage 2, the policy is fine-tuned on
the Stepping Stones and Balancing Beams terrains with hard
terrain constraints. The commands used in these two stages



TABLE I: Commands Sampled in Two Stage RL Training

Term Value (stage 1) Value (stage 2)

vc
x U(−1.0, 1.0) m/s U(−1.0, 1.0) m/s

vc
y U(−1.0, 1.0) m/s U(0.0, 0.0) m/s

ωc
yaw U(−1.0, 1.0) rad/s U(0.0, 0.0) m/s

are detailed in Table I. Note that in Stage 2, only a single x-
direction command is given, with no yaw command provided.
This means that if the robot deviates from facing forward,
no correction command is applied. We aim for the robot to
learn to consistently face forward from preceptive observation,
rather than relying on continuous yaw corrections.

For evaluation, the Stepping Stones, Balancing Beams,
Stepping Beams, and Gaps terrains are employed. Remarkably,
our method demonstrates strong zero-shot transfer capabilities
on the latter two terrains, despite the robot being trained
exclusively on the first three terrains.

The curriculum is designed as follows: the robot progresses
to the next terrain level when it successfully traverses the
current terrain level three times in a row. Furthermore, the
robot will not be sent back to an easier terrain level before
it pass all levels, as training on higher-difficulty terrains
is challenging at first. The detailed settings of the terrain
curriculum are presented in the Appendix VI-B.

3) Sim-to-Real Transfer: To enhance robustness and facil-
itate sim-to-real transfer, we employ extensive domain ran-
domization [37, 40] on key dynamic parameters. Noise is
injected into observations, humanoid physical properties, and
terrain dynamics. Additionally, to address the large sim-to-
real gap between the ground-truth elevation map in simulation
and the LiDAR-generated map in reality—caused by factors
such as odometry inaccuracies, noise, and jitter—we introduce
four types of elevation map measurement noise during height
sampling in the simulator:

• Vertical Measurement: Random vertical offsets are ap-
plied to the heights for an episode, along with uniformly
sampled vertical noise added to each height sample at ev-
ery time step, simulating the noisy vertical measurement
of the LiDAR.

• Map Rotation: To simulate odometry inaccuracies, we
rotate the map in roll, pitch, and yaw. For yaw rotation,
we first sample a random yaw noise. The elevation map,
initially aligned with the robot’s current orientation, is
then resampled by adding the yaw noise, resulting in a
new elevation map corresponding to the updated orien-
tation. For roll and pitch rotations, we randomly sample
the biases [hx, hy] and perform linear interpolation from
−hx to hx along the x-direction and from −hy to hy

along the y-direction. The resulting vertical height map
noise is then added to the original elevation map.

• Foothold Extension: Random foothold points adjacent to
valid footholds are extended, turning them into valid
footholds. This simulates the smoothing effect that occurs
during processing of LiDAR elevation data.

• Map Repeat: To simulate delays in elevation map updates,
we randomly repeat the map from the previous timestep.

The detailed domain randomization settings are provided in
Appendix VI-C.

E. Real-world Deployment

1) Hardware Setup: We use Unitree G1 humanoid robot
for our experiments in this work. The robot weighs 35 kg,
stands 1.32 meters tall, and features 23 actuated degrees of
freedom: 6 in each leg, 5 in each arm, and 1 in the waist. It
is equipped with a Jetson Orin NX for onboard computation
and a Livox Mid-360 LiDAR, which provides both IMU data
and feature points for perception.

2) Elevation Map and System Design: The raw point cloud
data obtained directly from the LiDAR suffers from significant
occlusion and noise, making it challenging to use directly. To
address this, we followed [25] to construct a robot-centric,
complete, and robust elevation map. Specifically, we employed
Fast LiDAR-Inertial Odometry (FAST-LIO) [43, 44] to fuse
LiDAR feature points with IMU data provided by the LiDAR.
This fusion generates precise odometry outputs, which are
further processed using robot-centric elevation mapping meth-
ods [7, 8] to produce a grid-based representation of ground
heights.

During deployment, the elevation map publishes informa-
tion at a frequency of 10 Hz, while the learned policy operates
at 50 Hz. The policy’s action outputs are subsequently sent to
a PD controller, which runs at 500 Hz, ensuring smooth and
precise actuation.

V. EXPERIMENTS

A. Experimental Setup

We compare our proposed framework BEAMDOJO, which
integrates two-stage RL training and a double critic, with the
following baselines:

1) PIM [25]: This one-stage method is designed for hu-
manoid locomotion tasks, such as walking up stairs
and traversing uneven terrains. We additional add our
foothold reward rfoothold to encourage the humanoid to
step accurately on the foothold areas.

2) Naive: This method neither include the two-stage RL
nor the double critic. The only addition is the foothold
reward. This is an naive implementation to solve this
task.

3) Ours w/o Soft Dyn: This is an ablation which removing
the first stage of training with soft terrain dynamics
constraints.

4) Ours w/o Double Critic: This is an ablation which uses
a single critic to handle both locomotion rewards and
foothold reward, instead of using a double critic. This
follows the traditional design in most locomotion tasks.

The training and simulation environments are implemented
in IsaacGym [26]. To ensure fairness, we adapt all methods to
two stages. For stage 1, we train the humanoid on the Stones



TABLE II: Benchmarked Comparison in Simulation.

Stepping Stones Balancing Beams Stepping Beams Gaps

Rsucc (%, ↑) Rtrav (%, ↑) Rsucc (%, ↑) Rtrav (%, ↑) Rsucc (%, ↑) Rtrav (%, ↑) Rsucc (%, ↑) Rtrav (%, ↑)

Medium Terrain Difficulty

PIM 71.00 (±1.53) 78.29 (±2.49) 74.67 (±2.08) 82.19 (±4.96) 88.33 (±3.61) 93.16 (±4.78) 98.00 (±0.57) 99.16 (±0.75)

Naive 48.33 (±6.11) 47.79 (±5.76) 57.00 (±7.81) 71.59 (±8.14) 92.00 (±2.52) 92.67 (±3.62) 95.33 (±1.53) 98.41 (±0.67)

Ours w/o Soft Dyn 65.33 (±2.08) 74.62 (±1.37) 79.00 (±2.64) 82.67 (±2.92) 98.67 (±2.31) 99.64 (±0.62) 96.33 (±1.53) 98.60 (±1.15)

Ours w/o Double Critic 83.00 (±2.00) 86.64 (±1.96) 88.67 (±2.65) 90.21 (±1.95) 96.33 (±1.15) 98.88 (±1.21) 98.00 (±1.00) 99.33 (±0.38)

BEAMDOJO 95.67 (±1.53) 96.11 (±1.22) 98.00 (±2.00) 99.91 (±0.07) 98.33 (±1.15) 99.28 (±0.65) 98.00 (±2.65) 99.21 (±1.24)

Hard Terrain Difficulty

PIM 46.67 (±2.31) 52.88 (±2.86) 33.00 (±2.31) 45.28 (±3.64) 82.67 (±2.31) 90.68 (±1.79) 96.00 (±1.00) 98.27 (±3.96)

Naive 00.33 (±0.57) 21.17 (±1.71) 00.67 (±1.15) 36.25 (±7.85) 82.00 (±3.61) 88.91 (±3.75) 31.00 (±3.61) 62.70 (±4.08)

Ours w/o Soft Dyn 42.00 (±6.56) 47.09 (±6.97) 51.00 (±4.58) 72.93 (±4.38) 87.33 (±2.08) 89.41 (±1.75) 93.00 (±1.00) 95.62 (±2.50)

Ours w/o Double Critic 55.67 (±3.61) 60.95 (±2.67) 70.33 (±3.06) 85.64 (±3.24) 94.67 (±1.53) 96.57 (±1.42) 94.33 (±3.06) 95.62 (±2.50)

BEAMDOJO 91.67 (±1.33) 94.26 (±2.08) 94.33 (±1.53) 95.15 (±1.82) 97.67 (±2.08) 98.54 (±1.43) 94.33 (±1.15) 97.00 (±1.30)
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Fig. 5: Foothold Error Comparison. The foothold error benchmarks
of all methods are evaluated in (a) stepping stones and (b) balancing
beams, both tested under medium terrain difficulty.

Everywhere with curriculum learning. In this stage, our method
and baseline 4 use soft terrain dynamics constraints, while
all other baselines use hard terrain dynamics constraints. For
stage 2, we conduct fine-tuning on the Stepping Stones and
Balancing Beams terrains with curriculum learning.

For evaluation, we test all methods on the Stepping Stones,
Balancing Beams, Stepping Beams and Gaps terrains. We
evaluate performance using three metrics:

• Success Rate Rsucc: The percentage of successful at-
tempts to cross the entire terrain.

• Traverse Rate Rtrav: The ratio of the distance traveled
before falling to the total terrain length (8 m).

• Foothold Error Efoot: The average proportion of foot
samples landing outside the intended foothold areas.

B. Simulation Experiments

1) Quantitative results: We report the success rate (Rsucc)
and traverse rate (Rtrav) for four terrains at medium and hard
difficulty levels (terrain level 6 and level 8, respectively) in
Table II. For each setting, the mean and standard deviation are
calculated over three policies trained with different random
seeds, each evaluated across 100 random episodes. Our key
observations are as follows:

• Leveraging the efficient two-stage RL framework and
the double critic, BEAMDOJO consistently outperforms
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Fig. 6: Learning Efficiency. The learning curves show the maximum
terrain levels achieved in two training stages of all methods. Faster
attainment of terrain level 8 indicates more efficient learning.

single-stage approaches and ablation designs, achieving
high success rates and low foothold errors across all
challenging terrains. Notably, the naive implementation
struggles significantly and is almost incapable of travers-
ing stepping stones and balancing beams at hard difficulty
levels.

• Existing humanoid controllers [25] face difficulties when
adapting to risky terrains with fine-grained footholds,
primarily due to sparse foothold rewards and low learning
efficiency.

• Despite the our method not being explicitly trained on
Stepping Beams and Gaps, it demonstrates impressive
zero-shot generalization capabilities on this terrain.

2) Detailed Ablation Analysis: We conduct additional ab-
lation studies by comparing BEAMDOJO with baselines 2, 3,
and 4.

Foot Placement Accuracy: As shown in Fig. 5,
BEAMDOJO achieves highly accurate foot placement with
low foothold error values, largely due to the contribution of
the double critic. In comparison, the naive implementation
shows higher error rates, with a substantial proportion of
foot placements landing outside the safe foothold areas. This
demonstrates the precision and effectiveness of our method in



TABLE III: Gait Regularization. We conduct experiments on
stepping stones and evaluate three representative gait regularization
reward metrics: smoothness, feet air time, and feet clearance. Detailed
definitions of the reward functions can be found in Table VII.

Designs Smoothness (↓) Feet Air Time (↑)

Naive 1.7591 (±0.1316) −0.0319 (±0.0028)

Ours w/o Soft Dyn 0.9633 (±0.0526) −0.0169 (±0.0014)

Ours w/o Double Critic 1.2705 (±0.1168) −0.0229 (±0.0033)

BEAMDOJO 0.7603 (±0.0315) −0.0182 (±0.0027)

Fig. 7: Foot Placement Planning Visualization. We illustrate two
trajectories for the foot placement process: the yellow line represents
BEAMDOJO, while the red line corresponds to Ours w/o Double
Critic. Points along the trajectories are marked at equal time intervals.
From A to C, the method without the double critic exhibits significant
adjustments only when approaching the target stone (at point B).

challenging terrains.
Learning Efficiency: Although we train for 10,000 itera-

tions in both stages to ensure convergence across all designs,
BEAMDOJO converges significantly faster, as shown in Fig. 6.
Both the two-stage training setup and the double critic improve
learning efficiency, with the two-stage setup contributing the
most. In contrast, the naive implementation struggles to reach
higher terrain levels in both stages.

The advantage of two-stage learning lies in its ability to
allow the agent to continuously attempt foot placements, even
in the presence of missteps, making it easier to accumulate
a substantial number of successful foot placement samples.
Meanwhile, the double-critic setup separates the foothold
reward from the locomotion rewards, ensuring that its updates
remain unaffected by the noise of unstable locomotion signals,
particularly in the early training phase. Both strategies play a
crucial role in enhancing learning efficiency.

Gait Regularization: The combination of small-scale gait
regularization rewards with sparse foothold reward can hinder
gait performance, as shown in Table III, where the naive
design and the ablation without the double critic exhibit poor
performance in both smoothness and feet air time. In contrast,
our method and the ablation with double critic demonstrates
superior motion smoothness and improved feet clearance. This
improvement arises because, in the double-critic framework,
the advantage estimates for the dense and sparse reward groups
are normalized independently, preventing the sparse rewards
from introducing noise that could disrupt the learning of
regularization rewards.

Foot Placement Planning: As illustrated in Fig. 7, we

TABLE IV: Agility Test. We evaluate the agility of the humanoid
robot on stepping stones with a total length of 2.8m.

vc
x (m/s) Time Cost (s) Average Speed (m/s) Error Rate (%, ↓)

0.5 6.33 (±0.15) 0.45 (±0.05) 10.67 (±4.54)

0.75 4.33 (±0.29) 0.65 (±0.05) 13.53 (±6.52)

1.0 3.17 (±0.58) 0.88 (±0.04) 11.83 (±8.08)

observe that the double critic also benefits foot placement
planning of the entire sub-process of foot lifting and land-
ing. Our method, BEAMDOJO, enables smoother planning,
allowing the foot to precisely reach the next foothold. In
comparison, the baseline excluding double critic demonstrates
reactive stepping, where adjustments are largely made when
the foot is close to the target stone. This behavior indicates
that the double critic, by learning the sparse foothold reward
separately, helps the policy adjust its motion over a longer
horizon.

C. Real-world Experiments

1) Result: As demonstrated in Fig.1, our framework
achieves zero-shot transfer, successfully generalizing to real-
world dynamics. To showcase the effect of height map domain
randomization (introduced in Section IV-D3) in sim-to-real
transfer, we compare our proposed method with an ablation
that excludes height map randomization (denoted as ”ours
w/o HR”). We conduct five trials on each terrain and report
the success and traversal rates in Fig. 8, with following
conclusions:

• BEAMDOJO achieves a high success rate in real-world
deployments, demonstrating excellent precise foot place-
ment capabilities. Similar to simulation results, it also
exhibits impressive generalization performance on Step-
ping Beams and Gaps, even though these terrains were
not part of the training set.

• The ablation, lacking height map domain randomization,
results in a significantly lower success rate, highlighting
the importance of this design.

• It is also worth mentioning that BEAMDOJO enables
backward movement in risky terrains, as shown in
Fig. 1(b). This advantage is achieved by leveraging Li-
DAR to its full potential, whereas a single depth camera
cannot handle such scenarios.

2) Agility Test: To assess the agility of our method, we
provide the humanoid robot with three commanded longitu-
dinal velocities, vc

x: 0.5, 0.75, and 1.0 m/s, and check the
tracking ability. Each test was conducted over three trials, and
the results are reported in Table IV. The results show minimal
tracking error, even at the highest command velocity of 1.0
m/s, where the robot achieved an average speed of 0.88 m/s,
which demonstrate the agility of our policy.

3) Robustness Test: To evaluate the robustness of our
precise foothold controller, we conducted the following ex-
periments on real-world experiment terrains:

• Heavy Payload:As shown in Fig. 9(a), the robot carried
a 10 kg payload—approximately 1.5 times the weight of



Stepping Stones Rsucc Rtrav

Ours w/o HR 1/5 38.20%
BEAMDOJO 4/5 92.18%

Balancing Beams Rsucc Rtrav

Ours w/o HR 0/5 12.37%
BEAMDOJO 4/5 88.16%

Stepping Beams Rsucc Rtrav

Ours w/o HR 1/5 30.00%
BEAMDOJO 3/5 70.00%

Gaps Rsucc Rtrav

Ours w/o HR 3/5 60.00%
BEAMDOJO 5/5 100.00%

Fig. 8: Real-world Experiments. We build terrains in the real world similar to those in simulation. (a) Stepping Stones: stones with a size
of 20 cm, a maximum distance of 45 cm between stones, and a sparsity level of 72.5%. (b) Balancing Beams: beams with a width of 20
cm. (c) Stepping Beams: beams with a size of 20 cm, a maximum distance of 45 cm between beams, and a sparsity level of 66.6%. (d)
Gaps: gaps with a maximum distance of 50 cm.

Fig. 9: Robustness Test. We evaluate the robustness of the humanoid robot in real-world scenarios with: (a) heavy payload, (b) external
forces, and (c) recovering from missteps.

TABLE V: Comparison of Different Foothold Reward Designs.
The success rate and foothold error for each foothold reward design
are evaluated on stepping stones with medium terrain difficulty.

Designs Rsucc (%, ↑) Efoot (%, ↓)

foothold-30% 93.67 (±1.96) 11.43 (±0.81)

foothold-50% 92.71 (±1.06) 10.78 (±1.94)

foothold-70% 91.94 (±2.08) 14.35 (±2.61)

BEAMDOJO 95.67 (±1.53) 7.79 (±1.33)

its torso—causing a significant shift in its center of mass.
Despite this challenge, the robot effectively maintained
agile locomotion and precise foot placements, demon-
strating its robustness under increased payload conditions.

• External Force: As shown in Fig. 9(b), the robot was
subjected to external forces from various directions.
Starting from a stationary pose, the robot experienced
external pushes, transitioned to single-leg support, and
finally recovered to a stable standing position with two-
leg support.

• Misstep Recovery: As shown in Fig. 9(c), the robot tra-
verse terrain without prior scanning of terrain dynamics.
Due to occlusions, the robot lacked information about the
terrain underfoot, causing initial missteps. Nevertheless,
it demonstrated robust recovery capabilities.

D. Extensive Studies and Analysis

1) Design of Foothold Reward: As discussed in Sec-
tion IV-A, our sampling-based foothold reward is proportional
to the number of safe points, making it a relatively continuous
reward: the larger the overlap between the foot placement and
the safe footholds, the higher the reward the agent receives.
We compare this approach with other binary and coarse reward
designs: when p% of the sampled points fall outside the safe
area, a full penalty is applied; otherwise, no penalty is given.
This can be defined as:

rfoothold−p% = −
2∑

i=1

Ci · 1


 n∑

j=1

1{dij < ϵ}

 ≥ p% · n

 .

(9)
We compare our continuous foothold reward design with

three variants of the coarse-grained approach, where p =
30, 50, and 70 (denoted as foothold-30%, foothold-50%, and
foothold-70% respectively). The success rate Rsucc and the
foothold error Efoot on stepping stones are reported in Table V.

It is clear that our fine-grained design enables the robot
to make more accurate foot placements compared to the
other designs, as this continuous approach gradually en-
courages maximizing the overlap. Among the coarse-grained
approaches, foothold-50% performs better than foothold-30%
and foothold-70%, as a 30% threshold is too strict to learn
effectively, while 70% is overly loose.

2) Design of Curriculum: To validate the effectiveness
of the terrain curriculum introduced in Section IV-D2, we



TABLE VI: Comparison of Different Curriculum Designs. The
success rate and traverse rate for each curriculum design are evaluated
on stepping stones with medium and hard terrain difficulty respec-
tively.

Designs Medium Difficulty Hard Difficulty

Rsucc Rtrav Rsucc Rtrav

w/o curriculum-medium 88.33 90.76 2.00 18.36
w/o curriculum-hard 40.00 52.49 23.67 39.94
BEAMDOJO 95.67 96.11 82.33 86.87

introduce an ablation study without curriculum learning. In
this design, we train using only medium and hard terrain dif-
ficulties in both stages (denoted as “w/o curriculum-medium”
and “w/o curriculum-hard”). Similarly, we report the Rsucc

and Rtrav for both ablation methods, along with our method,
on stepping stones terrain at two different difficulty levels
in Table VI. The results show that incorporating curriculum
learning significantly improves both performance and gen-
eralization across terrains of varying difficulty. In contrast,
without curriculum learning, the model struggles significantly
with challenging terrain when learning from scratch (“ours w/o
curriculum-hard”), and also faces difficulties on other terrain
types, severely limiting its generalization ability (“ours w/o
curriculum-medium”).

3) Design of Commands: As mentioned in Section IV-D2,
in the second stage, no heading command is applied, and
the robot is required to learn to consistently face forward
through terrain dynamics. We compare this approach with
one that includes a heading command (denoted as “ours
w/ heading command”), where deviation from the forward
direction results in a corrective yaw command based on the
current directional error. In the deployment, we use the LiDAR
odometry module to update the heading command in real time,
based on the difference between the current orientation and the
initial forward direction.

We conduct five trials on the stepping stones terrain in the
real world, comparing our proposed method with the “ours w/
heading command” design. The success rates are 4/5 and 1/5,
respectively. The poor performance of the heading command
design is primarily due to two factors: (1). In the simulation,
the model overfits the angular velocity of the heading com-
mand, making it difficult to handle noisy real-world odometry
data; (2). In the real world, precise manual calibration of the
initial position is required to determine the correct forward
direction, making the heading command approach less robust.
In contrast, BEAMDOJO, without heading correction, proves
to be more effective.

4) Failure Cases and Limitations: On the one hand, the
performance of our method is significantly constrained by the
limitations of the perception module. Inaccuracies in LiDAR
odometry, along with issues such as jitter and map drift,
present considerable challenges for real-world deployment.
Furthermore, when processing LiDAR data, the trade-off be-
tween the confidence in noisy measurements and the dynamic
changes in terrain—such as the jitter of stones, which is

difficult to simulate in the simulation—makes it challenging
to effectively handle sudden disturbances or variations. As a
result, the system struggles to quickly and flexibly adapt to
unexpected changes in the environment.

On the other hand, our method has yet to fully leverage
the information provided by the elevation map, and has not
adequately addressed the challenges of terrains with significant
foothold height variations. In future work, we aim to develop
a more generalized controller that enables agile locomotion,
extending to a broader range of terrains, including stairs and
other complex surfaces that require footstep planning, as well
as terrains with significant elevation changes.

VI. CONCLUSION

In this paper, we proposed a novel framework, BEAMDOJO,
which enables humanoid robots to traverse with agility and
robustness on sparse foothold terrains such as stepping stones
and balance beams, and generalize to a wider range of
challenging terrains (e.g., gaps, balancing beams). The key
conclusions are summarized as follows:

• Accuracy of Foot Placement: We introduced a foothold
reward for polygonal feet, which is proportional to the
contact area between the footstep and the safe foothold
region. This continuous reward effectively encourages
precise foot placements.

• Training Efficiency and Effectiveness: By incorporat-
ing a two-stage reinforcement learning training process,
BEAMDOJO enables full trial-and-error exploration. Ad-
ditionally, the double-head critic significantly enhances
the learning of sparse foothold rewards, regularizes gait
patterns, and facilitates long-distance foot placement
planning.

• Agility and Robustness in the Real World: Our experi-
ments demonstrate that BEAMDOJO empowers humanoid
robots to exhibit agility and achieve a high success
rate in real-world scenarios. The robots maintain stable
walking even under substantial external disturbances and
the inevitable sway of beams in real world. Notably, by
leveraging LiDAR-based mapping, we have achieved sta-
ble backward walking, a challenge typically encountered
with depth cameras.
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APPENDIX

A. Reward Functions

The reward functions we used during the training are shown
in Table VII, which mainly comes from [1, 9, 23, 27, 25]. The
corresponding symbols and their descriptions are provided in
Table VIII.

TABLE VII: Reward Functions

Term Equation Weight

Group 1: Locomotion Reward Group
xy velocity tracking exp

{
−∥vxy − vc

xy∥22/σ
}

1.0

yaw velocity tracking exp
{
−
(
ωyaw − ωc

yaw
)2

/σ
}

1.0

base height (h− htarget)2 −10.0

orientation ∥gx∥22 + ∥gy∥22 −2.0

z velocity v2
z −2.0

roll-pitch velocity ∥ωxy∥22 −0.05

action rate ∥at − at−1∥22 −0.01

smoothness ∥at − 2at−1 + at−2∥22 −1e− 3

stand still ∥θ∥22 · 1{∥vc
xy∥22 < ϵ} −0.05

joint velocities ∥θ̇∥22 −1e− 4

joint accelerations ∥θ̈∥22 −2.5e− 8

joint position limits ReLU(θ − θmax)+
ReLU(θmin − θ)

−5.0

joint velocity limits ReLU(|θ̇| − |θ̇max|) −1e− 3

joint power |τ∥θ̇|T /
(
∥v∥22 + 0.2 ∗ ∥ω∥22

)
−2e− 5

feet ground parallel
∑2

i=1 Var(pz,i) −0.02
feet distance ReLU (|py,1 − py,2| − dmin) 0.5

feet air time
∑2

i=1

(
tair,i − t

target
air

)
· Fi 1.0

feet clearance
∑2

i=1

(
pz,i − p

target
z

)2
· ṗxy,i −1.0

Group 2: Foothold Reward Group
foothold −

∑2
i=1 Ci

∑n
j=1 1{dij < ϵ} 1.0

TABLE VIII: Used Symbols

Symbols Description

σ Tracking shape scale, set to 0.25.
ϵ Threshold for determining zero-command in stand still re-

ward, set to 0.1.
τ Computed joint torques.

htarget Desired base height relative to the ground, set to 0.725.
ReLU(·) Function that clips negative values to zero [10].
pi, ṗi Spatial position and velocity of all sampled points on the i-th

foot respectively.
p

target
z Target foot-lift height, set to 0.1.
tair,i Air time of the i-th foot.
t

target
air Desired feet air time, set to 0.5.
Fi Indicator specifying whether foot i makes first ground contact.
dmin Minimum allowable distance between two feet, set to 0.18.

B. Terrain Curriculum

The training terrains using curriculum comprises Stones Ev-
erywhere, Stepping Stones, and Balancing Beams. The Stones
Everywhere terrain spans an area of 8m × 8m, while both
Stepping Stones and Balancing Beams are 2m in width and
8m in length, with single-direction commands. The depth of
gaps relative to the ground is set to 1.0m, and all stones and
beams exhibit height variations within ±0.05m. The depth
tolerance threshold, ϵ, is set to −0.1m.

We define terrain difficulty levels ranging from 0 to 8,
denoted as l. The specific terrain curriculum at each difficulty
level are as follows:

• Stones Everywhere: The stone size is max{0.25, 1.5(1−
0.1l)}, and the stone distance is 0.05⌈l/2⌉.

• Stepping Stones: The stone sizes follow the sequence
[0.8, 0.65, 0.5, 0.4, 0.35, 0.3, 0.25, 0.2, 0.2], with a maxi-
mum stone distance of 0.1 + 0.05l.

• Balancing Beams: The stone size is 0.3 − 0.05⌊l/3⌋,
with the stone distance in x-direction 0.4 − 0.05l, and
in y-direction [0.2, 0.2, 0.2, 0.25, 0.3, 0.35, 0.35, 0.4, 0.2].
At the highest difficulty level, the terrain forms a single
continuous balancing beam.

C. Domain Randomization

TABLE IX: Domain Randomization Setting

Term Value

Observations
angular velocity noise U(−0.5, 0.5) rad/s
joint position noise U(−0.05, 0.05) rad/s
joint velocity noise U(−2.0, 2.0) rad/s
projected gravity noise U(−0.05, 0.05) rad/s

Humanoid Physical Properties
actuator offset U(−0.05, 0.05) rad
motor strength noise U(0.9, 1.1)
payload mass U(−2.0, 2.0) kg
center of mass displacement U(−0.05, 0.05) m
Kp, Kd noise factor U(0.85, 1.15)

Terrain Dynamics
friction factor U(0.4, 1.0)
restitution factor U(0.0, 1.0)
terrain height noise U(−0.02, 0.02) m

Elevation Map
vertical offset U(−0.03, 0.03) m
vertical noise U(−0.03, 0.03) m
map roll, pitch rotation noise U(−0.03, 0.03) m
map yaw rotation noise U(−0.2, 0.2) rad
foothold extension probability 0.6
map repeat probability 0.2

D. Hyperparameters

TABLE X: Hyperparameters

Hyperparameter Value

General
num of robots 4096
num of steps per iteration 100
num of epochs 5
gradient clipping 1.0
adam epsilon 1e− 8

PPO
clip range 0.2
entropy coefficient 0.01
discount factor γ 0.99
GAE balancing factor λ 0.95
desired KL-divergence 0.01
actor and double critic NN MLP, hidden units [512, 216, 128]

BEAMDOJO
w1, w2 1.0, 0.25
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