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Fig. 1: Our system PhysHSI enables humanoid robots to perform diverse real-world interactions indoors and outdoors with natural behaviors: (a) Carry
Box, (b) Sit Down, (c) Lie Down, and (d) Stand Up. PhysHSI can also learn (e) stylized locomotion, such as dinosaur-like walking and high-knee stepping.

Abstract— Deploying humanoid robots to interact with real-
world environments—such as carrying objects or sitting on
chairs—requires generalizable, lifelike motions and robust
scene perception. Although prior approaches have advanced
each capability individually, combining them in a unified system
is still an ongoing challenge. In this work, we present a physical-
world humanoid-scene interaction system, PhysHSI, that en-
ables humanoids to autonomously perform diverse interaction
tasks while maintaining natural and lifelike behaviors. PhysHSI
comprises a simulation training pipeline and a real-world
deployment system. In simulation, we adopt adversarial motion
prior-based policy learning to imitate natural humanoid-scene
interaction data across diverse scenarios, achieving both gen-
eralization and lifelike behaviors. For real-world deployment,
we introduce a coarse-to-fine object localization module that
combines LiDAR and camera inputs to provide continuous
and robust scene perception. We validate PhysHSI on four
representative interactive tasks—box carrying, sitting, lying,
and standing up—in both simulation and real-world settings,
demonstrating consistently high success rates, strong general-
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ization across diverse task goals, and natural motion patterns.

I. INTRODUCTION

Imagine deploying humanoid robots in everyday environ-
ments—carrying boxes into diverse places or sitting naturally
on a chair. Building such a humanoid-scene interaction
(HSI) system is considered more sophisticated than executing
whole-body skills such as standing up [1, 2], dancing [3,
4], or performing agile motions [5–7]. Beyond these motor
capabilities, a real-world HSI system is expected to (1)
generalize across diverse interaction scenarios and goals, (2)
produce physically plausible and lifelike motions, and (3)
incorporate a robust perception module that provides reliable
information about surrounding objects and scenes [8].

Existing approaches fall short of these challenges. While
classical model-based methods generate stable motions via
motion planning or trajectory optimization for tracking [9–
13], their high computational cost and strong model as-
sumptions limit generalization to diverse real-world interac-
tions. In contrast, reinforcement learning (RL)-based meth-
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ods achieve broader generalization by training from diverse
simulated experiences. However, learning policies directly
from scratch—whether through a single monolithic pol-
icy [14–16] or multiple specialized ones [17–21]—typically
requires heavy reward shaping and state transition design,
particularly when natural and lifelike motions are desired. To
alleviate the hand-crafted design burden and improve motion
realism, methods that imitate motion capture (MoCap) priors
have been introduced—these approaches effectively yield
physically plausible, human-like motions and have driven
progress in physics-based character animation for dynamic
interactions [22–28]. However, such approaches largely re-
main confined to simulation and rely on perfect scene obser-
vations, leaving sim-to-real transfer an unexplored obstacle.

In this work, we address these challenges by introducing
PhysHSI, a real-world system that enables humanoid robots
to autonomously perform HSI skills with natural behaviors
across diverse goals and interaction scenarios. The system
consists of a simulation training pipeline and a real-world
deployment module. In simulation, to learn high-quality
humanoid interactions, we first curate retargeted MoCap
datasets [29, 30] and augment them with manually annotated
object information. Using these enriched datasets, we then
train generalizable HSI policies via reinforcement learning
with adversarial motion priors (AMP) [31, 32], leveraging
diverse simulation setups to achieve both natural motion
and robust generalization. For real-world deployment, where
reliable object localization is challenging due to limited fields
of view and frequent occlusions, we design a coarse-to-fine
perception module that integrates LiDAR-based odometry
for long-range directional cues with camera-based object
localization for precise pose estimation at close range.

We evaluate PhysHSI on four representative HSI
tasks—box carrying and relocation, sitting on chairs, lying
on beds, and standing up from chairs [23]—using Unitree
G1 humanoid robots in both simulation and real-world envi-
ronments. The results show that PhysHSI not only achieves
high success rates on these long-horizon tasks but also gen-
eralizes effectively across diverse scenarios and task goals.
In addition, we demonstrate that PhysHSI produces natural
and expressive motions through several learned stylized
locomotion behaviors [33]. An overview of the system’s real-
world performance is provided in Fig. 1.

In summary, our main contribution is introduing PhysHSI,
a real-world HSI system that encompasses: (1) an AMP-
based training pipeline in simulation that learns from hu-
manoid interaction data, enabling natural and generalizable
motions; (2) a coarse-to-fine real-world object localization
module that provides continuous and robust scene perception;
and (3) evaluation protocols that comprehensively analyze
the system and its components, aiming to guide future
research and development in real-world HSI tasks.

II. RELATED WORKS

A. Humanoid-Scene Interactions

Many works have studied humanoid-scene interaction
(HSI) in physics-based simulations, enabling natural, long-

horizon behaviors such as object loco-manipulation [23, 26–
28, 34]. However, these methods typically rely on idealized
task observations and thus face large sim-to-real gaps. For
real-world robots, classical approaches often employ model-
based motion planning to generate whole-body references for
tracking [9–13], but these methods exhibit limited generaliza-
tion in real-world scenarios. In contrast, RL-based methods
learn control policies from scratch with strong generalization
by carefully designing rewards and state transitions [14, 16,
17]. To achieve more natural motion, some works leverage
curated motion priors to guide policy learning for tasks such
as stair climbing and chair sitting [35, 36]. Building on
this line of work, our system learns from motion priors to
enable generalizable and natural behaviors for more complex
interactions, including box carrying and lying down.

B. Humanoid Motion Imitation

Humanoid motion imitation seeks to learn lifelike behav-
iors from human demonstrations, with motion tracking as
a central approach. In simulation, physics-based methods
achieve expressive whole-body motions by imitating indi-
vidual reference sequences [37–39] or learning universal
tracking [40]. Recent works extend these methods to real-
world robots [3–5, 7], but remain reference-dependent and
show limited generalization, constraining interactions with
diverse scenes. Adversarial Motion Priors (AMP) [31] im-
prove generalization by imitating motion styles and have
been widely studied in simulation [23, 27, 28]. However,
real-world applications are limited, with most works using
AMP primarily to regularize tracking policies for basic
locomotion skills [36, 41–43]. Building on AMP, our system
overcomes these limitations and enables natural behaviors
for diverse real-world scene and object interactions.

C. Scene Perception

Perception is a fundamental component for enabling hu-
manoid robots to interact with real-world scenes and ob-
jects. Motion capture (MoCap) systems can provide accurate
global information, supporting highly dynamic interactive
tasks [44–46]. However, MoCap is restricted to laboratory
environments with limited workspace. To enable more prac-
tical deployment, many studies rely on onboard RGB and
depth cameras for scene and object perception [15, 47–52].
Yet, these approaches generally confine target objects to
a local workspace and often lose sight of them during
long-horizon loco-manipulation tasks. Other studies employ
LiDAR-Inertial Odometry (LIO) [53, 54] to obtain global
information [35, 55–58], though interaction accuracy with
objects remains limited. In this work, we propose a coarse-to-
fine object localization system that relies solely on onboard
sensors and provides continuous and robust scene percep-
tion.

III. SIMULATION TRAINING PIPELINE

A. Data Preparation

We begin by preparing humanoid motion data that includes
object interactions. While prior works have successfully
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Fig. 2: Overview of PhysHSI. (a) Dataset Preparation: Human motions from a MoCap dataset are retargeted to humanoid motions, and objects are
annotated by identifying key contact frames. (b) AMP Policy Training: A discriminator distinguishes between policy-generated and reference motions to
facilitate learning of natural behaviors and task completion. (c) Real-World Deployment: The coarse object position is manually specified using LiDAR
visualization, and combined with odometry for coarse localization when the object is outside the camera’s FOV. Once within view, AprilTag detection
combined with odometry is used for fine-grained, automated localization.

retargeted human-only motions onto humanoid robots via
optimization [5, 59], generating physically plausible hu-
manoid–object interaction data is more challenging, as it
requires maintaining realistic contacts, such as a secure grasp
on a box during lifting.

To address this, we adopt a post-annotation strategy for
object information. Specifically, we first retarget SMPL mo-
tions from the AMASS and SAMP datasets [29, 30] onto the
humanoid robot via optimization, applying a smoothing filter
to suppress retargeting jitter, yielding a robot-motion-only
dataset MRobo. We then manually annotate key contact frames
and infer corresponding object trajectories using a simple
rule-based procedure: between pickup (ϕ1) and placement
(ϕ2), the object position pot ∈ R3 is set to the midpoint of
the hands, with orientation aligned to the robot base; before
ϕ1 and after ϕ2, it remains fixed at the respective key con-
tact frame. This process produces an augmented humanoid
motion dataset M with consistent and physically coherent
object positions, which is crucial for stage conditioning and
reference state initialization (Sec. III-B).

B. Adversarial Motion Prior Policy Training

We formulate the humanoid-scene interaction (HSI) prob-
lem as a reinforcement learning (RL) task. To enable hu-
manoids to interact with objects in a lifelike manner while
generalizing across diverse scenarios, we build on the Adver-
sarial Motion Priors (AMP) framework [31], which has two
components: a policy πθ that generates humanoid actions,
and a discriminator D that distinguishes between policy
motions and those in the reference motion dataset.

1) Observation and Action Space: The policy observation
oπ
t at each timestep t consists of a 5-step history of propri-

oception oP
t−4:t and task-specific observations oG

t−4:t.
The proprioception oP

t ∈ R108 is defined as

oP
t ≜

[
ωbt ,gbt ,θt, θ̇t,p

ee
bt ,at−1

]
, (1)

where bt represent robot base frame t, ωbt ∈ R3 is the base
angular velocity, gbt ∈ R3 is the base gravity direction,

θt ∈ R29 and θ̇t ∈ R29 are joint positions and velocities
respectively, pee

bt
∈ R5×3 denotes the 3D positions of five

end-effectors (left/right hand/foot, and head) in the base
frame, and at−1 is the action taken at the previous timestep.

The task-specific observation oG
t varies depending on

the task. In general, it consists of three components: (a)
the object shape bt ∈ R3, represented by its bounding
box dimensions; (b) the object position pot

bt
∈ R3 and

orientation Rot
bt

∈ R6 encoded with a 6D normal-tangent
representation [60]; and (c) the target goal position pgt

bt
∈ R3.

All quantities are expressed in the robot’s base frame.
The discriminator observation oD

t ∈ R57 at each timestep
consists of privileged information and is defined as

oD
t ≜

[
ht,vbt ,ωbt ,gbt ,θt,p

ee
bt ,p

ot
bt

]
, (2)

where ht ∈ R denotes the base height, vbt ∈ R3 is the
base linear velocity, ωbt is the base angular velocity. No-
tably, including the object position pot

bt
in the discriminator

observation is crucial for long-horizon tasks, as it lets the
discriminator implicitly condition on task phases—approach,
pickup, carry, or place—enhancing policy training guidance.

The action at ∈ R29 from policy πθ(o
π
t ) specifies target

joint positions, executed by a PD controller across all 29
humanoid DoFs.

2) Reward Terms and Discriminator Learning: The re-
ward function is defined as the sum of three components:
rt ≜ wGrGt + wRrRt + wSrSt , where rGt is the task reward
encouraging the humanoid to achieve high-level objectives,
rRt regularizes excessive joint torques and joint speed, rSt is
the style reward that encourages the humanoid to imitate be-
haviors from the reference motion dataset, and w(·) denotes
the corresponding coefficients.

The style reward is modeled using the adversarial discrim-
inator D, trained to differentiate between motions produced
by the policy and those in the dataset. The discriminator is



optimized according to [31]:

argmin
D

− EdM (oD
t:t+t∗ )

[
log

(
D(oD

t:t+t∗)
)]

− Edπ(oD
t:t+t∗ )

[
log

(
1−D(oD

t:t+t∗)
)]

+ wgpEdM (oD
t:t+t∗ )

[
∥∇ηD(η)|η=(oD

t:t+t∗ )

∥∥∥2 ],
(3)

where dM (oD
t:t+t∗) and dπ(oD

t:t+t∗) denote the distributions
of (t∗ + 1)-frame motion clips from the dataset M and
the policy πθ, respectively, and wgp is a coefficient that
regularizes the gradient penalty [61] in adversarial training.
Finally, the style reward for the policy is specified as

rSt ≜ − log
(
1−D(oD

t−t∗:t)
)
. (4)

To optimize the policy, we use the proximal policy opti-
mization (PPO) [62] to maximize the cumulative discounted
reward E

[∑T
t=1 γ

t−1rt

]
.

3) Hybrid Reference State Initialization: Many HSI tasks
are long-horizon, and directly initializing all episodes from
the default starting pose makes exploration difficult, since the
humanoid rarely experiences critical transitions. To address
this, we adopt the reference state initialization (RSI) strat-
egy [37], which initializes episodes from randomly sampled
reference motions along with the corresponding labeled
object states, thereby improving exploration efficiency.

This naive RSI strategy, however, risks overfitting to
the limited scene configurations in the demonstrations. We
mitigate this limitation in two ways. First, we leverage the
compositional nature of task stages: while a motion clip may
specify the pickup position of the box, the subsequent goal
position does not need to match the data. Thus, we sample
an initial phase ϕ ∈ [0, 1] from motion data, while ran-
domizing the scene for (ϕ, 1]. Second, a subset of episodes
are initialized from the default starting pose with fully
randomized scene parameters (e.g., object size, position, and
goal position). This hybrid RSI strategy promotes efficient
exploration while ensuring generalization.

4) Asymmetric Actor-Critic Training: In real-world, the
agent receives only partial observations due to noise and
sensing limitations. System constraints further require mask-
ing some task observations during training (see Sec. IV-
B). To compensate, we adopt the asymmetric actor-critic
framework [63], where the actor uses inputs oπ

t available
at deployment, while the critic observes a richer state oV

t

(e.g., base velocity and unmasked task observations).
5) Motion Constraints: As rewards accumulate across

stages, the agent tends to exploit shortcuts by producing
fast, jerky motions, especially later in training, which are
unsuitable for deployment. To address this, we assign a small
style reward weight wS early for exploration, and gradually
increase it to align with motion data. Additionally, we
adopt the L2C2 smoothness regularization [64] to enhance
smoothness and stability for hardware deployment.

IV. REAL-WORLD DEPLOYMENT SYSTEM

To deploy the trained HSI skills in the real world, two
key observations must be obtained: the end-effector posi-
tion pee

bt
and the object pose—position pot

bt
and orientation

Rot
bt

—in the robot base frame at time t. It is easy to get
accurate pee

bt
by forward kinematics (FK) with joint encoder

information. In contrast, reliable object localization is more
challenging, as onboard sensors often suffer from limited
fields of view and frequent occlusions—for instance, when
the robot starts with no object visible or when the object
moves out of view during motion. To overcome these and
obtain robust, continuous localization, we design a coarse-
to-fine perception system (Sec. IV-A) that integrates LiDAR
and RGB camera inputs. We further adapt the simulation
training to align with this perception pipeline (Sec. IV-B)
and describe the corresponding hardware setup in Sec. IV-C.

A. Coarse-to-Fine Object Localization

We represent position and orientation using the transform
matrix for clarity. Specifically,

T ot
bt

= fT(p
ot
bt
,Rot

bt
) ∈ SE(3) (5)

denotes the pose of object o at time t in the robot frame
bt, where fT(·) maps position pot

bt
and orientation Rot

bt
to

the transform matrix. At initialization, the target object is
often outside the camera’s field of view. We therefore assign
a coarse initial pose T o0

b0
, where the position po0

b0
is manually

specified using LiDAR point cloud visualization, and the
orientation Ro0

b0
is set as default from identity rotation matrix.

During execution, when the robot is far from the object,
we use FAST-LIO [53] to estimate the odometry T bt

b0
, i.e.,

the pose of the current base frame with respect to the initial
frame. The object position in the current base frame is then
obtained as:

pot
bt
,Rot

bt
= f−1

T ((T bt
b0
)−1T o0

b0
), (6)

where f−1
T (·) extracts position and orientation from a trans-

formation matrix. This provides a continuous but coarse
estimate of the object pose, sufficient to guide the robot
toward the target from long range.

For fine-grained localization at close range, AprilTag de-
tection [65] is employed to provide accurate object position
pot
ct and orientation Rot

ct in the camera frame ct. Coarse local-
ization automatically transitions to fine localization upon the
tag’s first detection. Temporary detection losses (e.g., when
the robot turns to sit down) are handled by retaining the last
observed object pose T

ot′
ct′ and corresponding FK information

T
ct′
bt′

, which are then propagated to the current time t using
odometry T bt

bt′
, following the same principle as Eq. 6:

pot
bt
,Rot

bt
= f−1

T

(
(T bt

bt′
)−1T

ct′
bt′

T ot′
ct′

)
. (7)

We further distinguish between static and dynamic objects.
For static objects (e.g., chairs), the pose is assumed fixed
and updated via the propagation strategy described above,
such as when the robot prepares to turn and sit down. For
dynamic objects (e.g., boxes), this estimation is valid until
grasping; after grasping, if the object leaves the camera view,
both position and orientation are masked, and proprioception
is relied to complete the task. A simple distance threshold
ϵ defines the grasp phase: if the estimated object distance



TABLE I: Benchmarked Comparison in Simulation.

Carry Box Sit Down Lie Down Stand Up

Rsucc(%, ↑) Shuman(↑) Rsucc(%, ↑) Shuman(↑) Rsucc(%, ↑) Shuman(↑) Rsucc(%, ↑) Shuman(↑)

In Distribution Scene

RL-Rewards 72.92 (±8.29) 1.67 (±0.47) 83.60 (±5.98) 1.50 (±0.24) 76.72 (±9.43) 0.50 (±0.00) 93.02 (±0.71) 1.50 (±0.24)

Tracking-Based 11.84 (±3.16) 4.83 (±0.24) 31.46 (±2.96) 3.80 (±0.08) 19.58 (±1.02) 2.23 (±0.21) 99.00 (±1.28) 4.67 (±0.12)

PhysHSI 91.34 (±1.63) 4.00 (±0.41) 96.28 (±0.21) 4.80 (±0.08) 97.86 (±0.60) 4.80 (±0.08) 99.68 (±0.21) 3.77 (±0.21)

Full Distribution Scene

RL-Rewards 63.40 (±8.63) 1.17 (±0.24) 73.14 (±4.29) 3.07 (±0.09) 55.76 (±12.51) 2.00 (±1.08) 90.50 (±2.33) 1.07 (±0.09)

Tracking-Based 0.02 (±0.01) 0.50 (±0.00) 1.12 (±0.51) 0.50 (±0.00) 0.94 (±0.45) 1.00 (±0.41) 35.32 (±2.51) 3.27 (±0.54)

PhysHSI 84.60 (±3.74) 3.83 (±0.24) 91.32 (±2.48) 4.77 (±0.05) 81.28 (±3.99) 4.43 (±0.33) 92.24 (±0.75) 3.77 (±0.52)

exceeds ϵ, the object is treated as static; otherwise, it is
assumed to move with the robot.

B. Sim-to-Real Transfer

To better match real-world observations, we apply domain
randomization [66]. Two key strategies are used: (1) adding
random offsets, Gaussian noise, and delays to object poses
and FK observations; (2) replicating the masking mechanism
for dynamic objects during the grasping stage, which is
applied when the object is outside the camera’s view, the
goal distance is out of range, or the camera angle deviates
excessively from vertical. We further adopt standard domain
randomization techniques from [55] to enhance robustness
and facilitate sim-to-real transfer.

C. Hardware Setup

Our system is built on the Unitree G1 humanoid robot,
equipped with a built-in Livox Mid-360 LiDAR and an exter-
nal Intel RealSense D455 depth camera mounted on the head,
with a 86◦ horizontal and 57◦ vertical field of view. Percep-
tion modules—including point cloud visualization, Fast-LIO,
AprilTag detection, and forward kinematics—together with
the learned policy, all run onboard on a Jetson Orin NX,
enabling fully portable deployment.

V. SIMULATION EXPERIMENTS

In this section, we validate the effectiveness of our simu-
lation training pipeline and conduct ablation studies to assess
the contribution of each module.

A. Experimental Setup

We compare PhysHSI to two commonly adopted baselines:
• RL-Rewards: The humanoid learns HSI tasks from

scratch without motion references, using a combination
of gait, task, and regularization RL rewards.

• Tracking-Based: The agent mimics motion references by
tracking humanoid and object trajectories provided by the
dataset. We use the same dataset as in PhysHSI, which
contains roughly 2–5 complete trajectories per task.

All training and evaluation environments are implemented in
IsaacGym [67]. We benchmark methods on four representa-
tive HSI tasks: carry box (walk to, lift, carry, and place the
box), sit down (walk to and sit on a chair), lie down (walk
to and lie on a bed), and stand up (rise from a chair).

Fig. 3: Spatial Generalization. Root trajectories of the robot are shown for
tasks (a) Carry Box and (b) Lie Down. Red trajectories indicate reference
data, with others representing sampled policy motions.

For evaluation, we consider two settings: in-distribution
scenes, which only include scene settings from the dataset,
and full-distribution scenes, where scenes are uniformly
sampled within the task space (objects placed within [0, 5]m
of the start position; boxes initialized at heights within
[0, 0.6]m and size dimensions within [0.2, 0.5]m).

We report two metrics: success rate (Rsucc) and human-
likeness score (Shuman). Rsucc measures whether the object
is correctly placed or the humanoid reaches the desired pose.
Shuman is evaluated by Gemini-2.5-Pro [68], which, given
task descriptions and experimental trajectories, assigns a
human-like score ranging from 0 to 5 for each demonstration
clip. For each setting, the mean and standard deviation are
computed over five random seeds, each evaluated across
1000 episodes and three demo clips.

B. Overall Performance

PhysHSI achieves high success rates and produces natural,
lifelike motions across all tasks, as shown in Table I. Key
findings are as follows:
Consistently High Success Rates PhysHSI completes all
four long-horizon HSI tasks with consistently strong perfor-
mance. In the more challenging carry box task with four
subtasks, it reaches an 81.34% success rate, comparable to
the simpler two-step sit down task.
Strong Generalization Unlike tracking-based methods that
mimic reference trajectories frame by frame, PhysHSI lever-
ages AMP frameworks to enable flexible motion recombina-
tion, requiring only style alignment with motion priors. This
enables comparable success rates even in full-distribution
scenes, whereas tracking-based methods almost completely



fail (near 0 success) due to the limited scale of reference data.
Fig. 3 shows partially successful trajectories, highlighting the
strong generalization learned from only a few references.
Lifelike Motion Patterns PhysHSI attains significantly
higher Shuman than RL reward–based methods. By training
the policy and discriminator in competition, our approach
effectively distinguishes between dataset motions and policy-
generated motions, leading to natural behaviors. In contrast,
RL reward methods require carefully hand-crafted gait and
regularization terms, which are difficult to design and less
effective for long-horizon tasks.

C. Ablation Analysis

We conduct ablation studies on the data processing, RSI
strategy and mask strategy. The main results are presented
in Table II, with the following key observations:

Data quality and object annotation are critical for
natural motion and task completion. Training without
smoothed motion data (w/o Smoothness) produces unnatural
behaviors, as the policy—guided by the discriminator—may
exploit artifacts such as jittering end-effectors or abrupt
motion shifts. Removing object annotations (w/o Object) in-
creases failure rates, since object states in AMP observations
are essential for learning stage transitions and motion styles.
For instance, when the object is distant, the discriminator
drives the humanoid to walk toward it, while during carrying,
it keeps the box centered between the hands.

Hybrid RSI is crucial for generalization and efficiency.
We compare our hybrid RSI with two alternatives: no RSI
(w/o RSI) and naive RSI, where all episodes are initialized
from reference states fixed to dataset settings. Naive RSI
performs worse than no RSI, demonstrating poor generaliza-
tion and low training efficiency due to the limited diversity
of observed scenes. In contrast, hybrid RSI significantly
improves both generalization and sample efficiency.

Mask processing has a limited impact on overall
performance. Although the masking strategy introduced in
Sec. IV-B slightly slows training compared to using complete
object states (w/o Obs Mask), which represent an upper
bound on performance, it only minimally affects the final
policy success rate in the two ablation cases.

VI. REAL-WORLD EXPERIMENTS

In this section, we evaluate the overall system performance
in real-world scenarios and assess the effectiveness of our
proposed coarse-to-fine object localization module.

A. Overall Performance

As shown in Fig. 1, PhysHSI achieves zero-shot trans-
fer and successfully completes all four HSI tasks in real-
world settings. We further evaluate success rate Rsucc, finish
precision Rprecision, execution time Texec, and maximum
movement range Mrange with 10 trials per task, as reported
in Table III. Our key findings are summarized below:
• PhysHSI achieves competitive success rates with high

precision in real-world deployments across all four tasks,
showing particularly strong performance on lie down and

TABLE II: Ablation Experiments.

Carry Box Sit Down

Rsucc(%, ↑) Shuman(↑) Rsucc(%, ↑) Shuman(↑)

Ablation on Data Processing

w/o Smoothness 63.28 (±11.72) 2.33 (±1.03) 87.24 (±2.19) 1.33 (±0.23)

w/o Object 55.42 (±8.17) 2.60 (±0.57) 72.36 (±6.71) 3.50 (±0.70)

PhysHSI 79.34 (±4.71) 3.83 (±0.24) 91.32 (±2.48) 4.77 (±0.05)

Ablation on RSI Strategy

w/o RSI 41.24 (±6.92) 2.50 (±1.63) 78.24 (±3.91) 4.50 (±0.00)

Naive RSI 5.70 (±2.38) 0.50 (±0.0) 18.70 (±5.33) 1.83 (±0.62)

Hybrid RSI 79.34 (±4.71) 3.83 (±0.24) 91.32 (±2.48) 4.77 (±0.05)

Ablation on Mask Strategy (for dynamic objects)

w/o Obs Mask 85.90 (±2.90) 4.30 (±0.14) / /
PhysHSI 79.34 (±4.71) 3.83 (±0.24) 91.32 (±2.48) 4.77 (±0.05)

TABLE III: Real-World Experiments. Success rates for the pick-up stage
and the full sequence are separately reported for the Carry Box task.

Tasks Rsucc Rprecision (m) Texec (s) Mrange (m)

Carry Box 8/10, 6/10 0.19 (±0.10) 10.5 (±2.8) 5.69
Sit Down 9/10 0.07 (±0.03) 6.2 (±1.3) 4.14
Lie Down 8/10 0.16 (±0.07) 6.7 (±1.0) 3.76
Stand Up 8/10 / 2.3 (±0.4) 1.74

sit down. For the more challenging carry box task, the
system attains an 8/10 success rate for lifting and 6/10
for the full sequence, with placement errors under 20 cm.

• PhysHSI generalizes effectively across variations in spa-
tial layout and object properties, handling locomotion
over distances up to 5.7m with diverse box dimensions,
heights, and weights. Representative examples of varied
scene configurations are shown in Fig. 4.

• Compared to reward-tuned RL policies, PhysHSI gener-
ates more natural, human-like motions. Our policy in-
herits the catwalk-style locomotion present in AMASS
data, while the framework also supports stylized motion
learning. As shown in Fig. 1(e), the system can produce
diverse locomotion styles, such as dinosaur-like walking
or high-knee stepping.

• PhysHSI can be deployed outdoors using only onboard
sensing and computation (Fig. 1(a)-(c)). This highlights
the portability of our system compared to MoCap-based
deployments that rely on external infrastructure.

B. Object Localization Module Analysis

To evaluate the effectiveness of our object localization
module, we conducted 17 real-world HSI trials, 15 of which
were successful. For each trial, we recorded the object trajec-
tories estimated by our module and compared them against
ground-truth trajectories obtained from a MoCap system. We
also measured the robot-object distance at the coarse-to-fine
transition point. As shown in Fig. 5(a), localization error is
relatively large (0.35m) when the robot is far from the object.
Once within 2.4m, AprilTag detection activates, switching
to fine localization with an average error of 0.05m. These
results demonstrate the effectiveness of our design: the coarse
stage provides reliable directional guidance at long range,
while the fine stage yields accurate positions at close range.



Fig. 4: Real-World Generalization. PhysHSI generalizes to diverse real-world scenes, (a) handling boxes of varying shapes, weights, and heights, and
(b) sitting or (c) lying on chairs and beds of different heights, both indoors and outdoors.

TABLE IV: Limitation Test for Carry Box Task.

Test Condition Box Height Box Weight Maximum Box Size

0 cm 20 cm 40 cm 60 cm 0.6kg 1.2kg 2.3kg 3.6kg 4.5kg 20 cm 30 cm 40 cm 45 cm

Rsucc(↑) 2/3 3/3 3/3 1/3 2/3 3/3 2/3 1/3 0/3 2/3 3/3 2/3 3/3
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Fig. 5: Real-World Localization System Analysis. (a) Localization error
versus robot–object distance, with coarse-to-fine transition statistics and
distribution. (b) A representative object localization trajectory, highlighting
three stages: (i) coarse localization, (ii) fine localization, and (iii) grasp.

The overall success rate of 15/17 further confirms robustness.
Two failures occurred due to coarse guidance deviating too
far (preventing tag from entering FOV) and a system crash.

To further analyze error sources across stages, we exam-
ine one successful trajectory by comparing the estimated
localization with the ground-truth trajectory (Fig. 5(b)).
Three stages are observed: (i) Coarse stage: errors mainly
arise from manually specified goal points in LiDAR point-
cloud visualization, deviating 0.3m from the exact position.
Despite this, the estimated and ground-truth trajectories
show consistent trends, which is sufficient for guidance. (ii)
Fine stage: errors stem from odometry drift and AprilTag
noise, but remain small, with trajectories closely aligned.
(iii) Grasping stage: at close range, errors are dominated
by AprilTag noise and are more pronounced due to rapid
manipulative motions compared to smoother locomotion.

C. System Limitation Analysis

We analyze the limitations of our system on the carry box
task. We evaluate different carrying heights, box masses, and
shapes, each with three trials, and report the success rates in
Table IV. We find that the humanoid can stably carry boxes
at heights in [0, 60] cm, with weights in [0.6, 3.6] kg, and
maximum sizes up to [20, 45] cm. Carrying higher boxes
exceeds the robot’s vertical FOV even when stationary, while
heavier or wider boxes cannot be handled due to the limited
reach of the rubber hand and arm length.

Beyond these findings, we identify several broader limita-
tions that highlight challenges in advancing HSI capabilities:
Hardware Constraints. The current system relies on the

Unitree G1’s rubber hand for clamping, which restricts
manipulation of larger or heavier boxes. Excessive weight
may also cause motor overheating and potential hardware
failures during execution.
Large-Scale High-Quality HSI Data. In this work, we post-
annotate objects in retargeted humanoid motion data and
select a small subset of high-quality samples for training.
However, this manual process does not scale well when large
scale of high-quality HSI data are required.
Automated Perception Module. Our current object lo-
calization relies on a modular real-world system, which
introduces complexity and potential fragility. Developing
a more automated perception module, for example with
active perception that enables autonomous exploration, could
improve robustness and simplify deployment.

VII. CONCLUSIONS

We presented PhysHSI, a real-world system for general-
izable and natural humanoid-scene interaction, combining
an effective simulation training pipeline with a robust de-
ployment module. PhysHSI successfully performs tasks such
as carry box and lie down in real-world scenarios with
high success rates, strong spatial and object-level general-
ization, and natural motion behaviors. Moreover, with only
a manually specified coarse object initialization and a single
fiducial tag, our system can autonomously complete tasks
even in outdoor environments, demonstrating its portability.
This work represents an initial exploration of real-world HSI
tasks and paves the way for more advanced object- and
scene-interaction capabilities in practical applications.
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APPENDIX

A. Tasks
In this section, we provide detailed definitions of each task,

including the composition of the reference motion dataset M ,
the task-specific observation oGt , and the task reward rGt .

1) Carry Box: The humanoid starts from a random posi-
tion and is tasked with approaching and moving a box from
a randomly initialized 3D location to a target 3D location.
In simulation, two thin platforms are used to support the
box, since both the initial and target heights are randomly
generated.
Reference Motion Dataset The motion dataset for Carry
Box consists of two parts. The first part, Loco, includes 11
motion sequences from the AMASS [29] dataset, covering
basic locomotion behaviors such as standing, walking, and
turning on flat ground. The second part, Carry, includes
3 sequences from the AMASS dataset and 2 video-based
motion sequences, which were retargeted to SMPL motions
using GVHMR [69] and subsequently refined by manually
correcting certain joints to ensure better physical feasibility.
For convenience in RSI, this dataset is further divided into
three subsets: pickUp, carryWith, and putDown.
Task Observations The task-specific observation oG

t ∈ R15

comprises the following properties of the target box:
• Box shape bt ∈ R3

• Box position pot
bt

∈ R3

• Box rotation Rot
bt

∈ R6

• Goal location of the box pgt
bt

∈ R3

Task Rewards We implement the multi-stage task reward
function similar to TokenHSI [28]. The first stage aims to
encourage the robot to walk toward the initial box:

rlocot =


1.5,

∥∥pot
xy − pbt

xy

∥∥ < 0.7

1.0 exp
(
− 5.0

∥∥0.85− d∗
t · ṗbt

xy

∥∥2 )+
0.5 exp

(
− 0.75 ∥∆θ(d∗

t ,dbt)∥
)
, otherwise

(8)
where pot

xy and pbt
xy denote the 2D positions of the object

and the robot base in the world frame, respectively. d∗
t is

a horizontal unit vector pointing from pbt
xy to pot

xy , dbt is
the 2D horizontal unit vector of the robot base orientation in
the world frame, and a · b represents the vector dot product.
∆θ(d∗

t ,dbt) is the yaw error between target heading and root
heading, defined as

∆θ(a,b) = arctan 2(ay,ax)− arctan 2(by,bx), (9)

where a and b are 2D horizontal vectors. The second stage
is to encourage the robot to pick up and move the box to its
target location, which is defined:

rcarryt =



0.0,
∥∥pot

xy − pbt
xy

∥∥ > 0.7

2.2,
∥∥pbt

xy − pgt
xy

∥∥ < 0.7

1.0 exp
(
− 5.0

∥∥∥0.85− d#
t · ṗbt

xy

∥∥∥2 )+
0.5 exp

(
− 0.75

∥∥∥∆θ(d#
t ,dbt)

∥∥∥ )+
0.7 exp

(
− 3.0

∥∥pot − phandt
∥∥2 ), otherwise

(10)

where pgt
xy denotes the 2D positions of the goal in the world

frame, d#
t is a horizontal unit vector pointing from pbt

xy to
pgt
xy , and phandt denotes the mean 3D coordinates of the

robot’s two hands. The third term of rcarryt encourages the
robot to pick up the box using its hands. To further reinforce
this behavior, we additionally reward the lifting height during
the pickup stage, defined as:

rpickt =


0.0,

∥∥pot
xy − pbt

xy

∥∥ > 0.7

2.0,
∥∥pbt

xy − pgt
xy

∥∥ < 0.7 or pot
z > 0.75

2.0 exp
(
− 3.0 ∥0.75− pot

z ∥
)
, otherwise

(11)

where pot
z denotes the height of the box in the world frame.

Additionally, we further design a reward function rputt to
encourage the robot to accurately place the box at the target
location:

rputt =


0.0,

∥∥pbt
xy − pgt

xy

∥∥ > 0.7

2.0, ∥pot − pgt∥ < 0.05

1.0 exp
(
− 10.0 ∥pot − pgt∥

)
+

1.0 exp
(
− 3.0 (pot

z − pgt
z )

)
, otherwise

(12)

where pgt
z denotes the height of the goal in the world frame.

Therefore, the total task reward function for Carry Box be
formulated as:

rG carryBox
t = rlocot + rcarryt + rpickt + rputt . (13)

Scene Randomization We randomize the task scene along
the following four dimensions:

• The 2D position of the box and the target relative to
the robot’s initial position is uniformly sampled from
[−4.0, 4.0]m relative to the robot’s initial base position.

• The height position of both the box and the target is
uniformly sampled from [0.0, 0.6]m above the ground.

• The box size is randomized, with the width uniformly
sampled from [0.2, 0.5]m and the height uniformly sam-
pled from [0.15, 0.35]m.

• The box density is uniformly sampled from
[10, 100] kg/m3.

Observation Mask Strategy As discussed in Sec. IV-B, we
align the simulation training with the real-world deployment
by masking object observations pot

bt
and Rot

bt
when the box

is out of view during the grasping stage of dynamic objects.
We define an object as out of view in simulation if it satisfies
one of the following conditions:

• Facing condition: The surface normal of the box must face
toward the camera, i.e., the angle between the viewing di-
rection and the surface normal is within (60◦+∆), where
the offset ∆ is uniformly sampled from [−10◦, 10◦].

• FOV condition: All tag positions of the box must lie
within the camera’s field-of-view (FOV), constrained by
both the horizontal and vertical FOV angles.

• Distance condition: The mean tag position must lie within
2.5m range from the camera.



2) Sit Down and Lie Down: The humanoid starts from
a random position and is tasked with approaching a fixed
chair or bed surface to perform a sitting or lying action. In
the simulation, a thin platform and a box are used to support
sitting and lying behaviors, respectively.
Reference Motion Dataset For locomotion, we use the
same Loco dataset as in the Carry Box task. For the Sit
Down task, we additionally select four sitting sequences from
SAMP [30], and for the Lie Down task, we additionally select
six lying sequences from SAMP.
Task Observations The task-specific observation oG

t ∈ R9

comprises the following properties of the target chair/bed:
• Chair/bed position pot

bt
∈ R3

• Chair/bed rotation Rot
bt

∈ R6

Task Rewards For the locomotion stage, both tasks share
the same locomotion reward rlocot as in the Carry Box task.
The second stage encourages the robot to sit down on the
chair or bed, with the sitting reward defined as:

rsitt =


0.0,

∥∥pot
xy − pbt

xy

∥∥ > 0.7

1.0 exp
(
− 3.0

∥∥pot − pbt
∥∥ )+

1.0 exp
(
− 5.0

(
pot
z − pbt

z

) )
+

1.0 exp
(
− 0.75 ∥∆θ(dot ,dbt)∥

)
, otherwise

(14)
where pot and pbt represent the 3D positions of the ob-
ject (chair/bed) surface center and the robot base in the
world frame, respectively, while dot and dbt denote the
2D horizontal unit vectors of the object and the robot base
orientations in the world frame. The total reward function
for Sit Down is then given by:

rG sitDown
t = rlocot + rsitt . (15)

For Lie Down, once the robot has successfully sat on the
bed, we introduce an additional reward to encourage lying
down while facing upward toward the sky, combined with
rsitt and defined as:

rliet =


rsitt ,

∥∥pot
xy − pbt

xy

∥∥ < 0.3 and
(
pot
z − pbt

z

)
< 0.05

3.0 + 0.5 exp
(
− 0.75 ∥Dworld z ·Dbt)∥

)
+

0.5 exp
(
− 2

∥∥∥∆θ(d⊥
ot ,d

†
t)
∥∥∥ ), otherwise

(16)
Here, Dworld z ∈ R3 denotes the global vertical direction
[0, 0, 1], and Dbt ∈ R3 denotes the robot’s upward direction
vector. The first term encourages the robot to face upward
toward the sky. d⊥

ot is the 2D unit vector perpendicular to
dot , and d†

t is the horizontal unit vector pointing from the
head to the robot base. The second term encourages the robot
to align parallel with the bed edge. Then the total reward
function for Sit Down is then given by:

rG lieDown
t = rlocot + rliet . (17)

Scene Randomization We randomize the task scene along
the following three dimensions:

• The 2D position of the chair or bed is uniformly sam-
pled within [−5.0, 5.0]m relative to the robot’s initial
base position.

• The height of both the chair and the bed is uniformly
sampled from [0.2, 0.5]m above the ground.

• The size of the chair and bed is randomized: the length
and width of the chair are uniformly sampled from
[0.3, 0.6]m, while the bed length is uniformly sampled
from [1.2, 3.2]m and its width from [0.38, 0.63]m.

3) Stand Up: The humanoid starts in a seated position on
the fixed chair and is tasked with standing up and walking
toward a designated target location. Similarly, a thin platform
is used to support stable sitting behaviors in simulation.
Reference Motion Dataset For locomotion, we use the same
Loco dataset as in the Carry Box task. For the Stand Up task,
we additionally select two getting up sequences from SAMP.

In addition, to ensure initialization stability, we pre-
collected a set of stable sitting poses on chairs of different
heights using the sitting policy. These poses were used for
initialization during training.
Task Observations The task-specific observation oG

t ∈ R12

comprises the following components:

• Chair position pot
bt

∈ R3

• Chair rotation Rot
bt

∈ R6

• Target position pgt
bt

∈ R3

Task Rewards In the first stage, the robot is encouraged to
stand up to a target height, defined as:

rstandupt =

{
3.0, pbt

z > 0.72

3.0 exp
(
− 5.0

(
0.72− pbt

z

) )
. otherwise

(18)
Once the robot has reached the target height, it is encouraged
to walk toward the goal position, defined as:

rloco tar
t = 0.5 exp

(
− 5.0

∥∥0.85− d′
t · ṗbt

xy

∥∥2 )+
0.5 exp

(
− 0.75 ∥∆θ(d′

t,dbt)∥
)
,

(19)

where d′
t is a horizontal unit vector pointing from pbt

xy to
pgt
xy . The total reward function for Stand Up is then given

by:

rG standUp
t = rstandupt + rloco tar

t . (20)

Scene Randomization We randomize the task scene along
the following three dimensions:

• The 2D position of the target is uniformly sampled
within [−5.0, 5.0]m relative to the robot’s initial base
position.

• The height of the chair is uniformly sampled from
[0.2, 0.6]m above the ground.

• The length and width of the chair is uniformly sampled
from [0.38, 0.63]m.

Configuration In the original setting, we use a standing
pose as the default pose. When initializing the robot from
a seated pose, the policy often causes an abrupt upward jerk
to transition into standing, disrupting training and causing
instability. Therefore, for the Stand Up, we set the default
pose to a predefined seated pose, detailed in Table V, to
ensure a stable initial state.



TABLE V: Default Pose Configuration for the Stand Up Task

Term Value Term Value

left hip pitch joint −1.2 right hip pitch joint −1.2
left hip roll joint 0.2 right hip yaw joint −0.2
left hip yaw joint 0.0 right hip yaw joint 0.0
left knee joint 1.2 right knee joint 1.2
left ankle pitch joint 0.0 right ankle pitch joint 0.0
left ankle roll joint 0.0 right ankle roll joint 0.0
left shoulder pitch joint 0.2 right shoulder pitch joint 0.2
left shoulder roll joint 0.8 right shoulder roll joint −0.8
left shoulder yaw joint −0.7 right shoulder yaw joint 0.7
left elbow joint −0.3 right elbow joint −0.3
left wrist roll joint 0.0 right wrist roll joint 0.0
left wrist pitch joint 0.0 right wrist pitch joint 0.0
left wrist yaw joint 0.0 right wrist yaw joint 0.0
waist yaw joint 0.0 waist roll joint 0.0
waist pitch joint 0.6

4) Stylized Locomotion: The humanoid is tasked with
tracking the given command ct = [vc

x,v
c
y,ω

c
yaw] ∈ R3

(denote the linear velocities in the longitudinal and lateral
directions, and the angular velocity in the horizontal plane,
respectively) while walking with a stylized gait, such as
dinosaur-like walking or high-knee stepping.
Reference Motion Dataset We select two motion styles,
Dinosaur and HighKnees, from the 100STYLE dataset [33].
Each style includes three sequences: forward walking, back-
ward walking, and sidestep walking.
Task Rewards The only task reward for Stylized Locomotion
is to track the given linear and angular velocities, defined as:

rG styleLoco
t = 1.0 exp

(
− 4

∥∥vxy − vc
xy

∥∥2 ) +

0.5 exp
(
− 4

(
ωyaw − ωc

yaw

)2 )
.

(21)

B. Training Details

1) Regularization Rewards: The regularization reward rRt
is summarized in Table VI.

TABLE VI: Regularization Reward Functions

Term Weight Term Weight

dof velocity −2e− 4 torques −1e− 4
dof acceleration −1e− 7 torque limits −0.1
dof position limits −5.0 action rate −0.03
dof velocity limits −1e− 3

2) Domain Randomization: To enhance robustness and
facilitate sim-to-real transfer, we employ domain random-
ization, summarized in Table VII.

3) Hyperparameters: The hyperparameters used for train-
ing is summarized in Table VIII.

C. Deployment Details

To support the Intel RealSense D455 camera mounted
on the humanoid’s head, we designed a 3D-printed camera
bracket. The bracket is fixed to the torso link with an offset of
(0.08, 0.01, 0.40)m and rotated by approximately 40◦ about
the pitch axis, as shown in Fig. 6.

D. Evaluation Details

1) Baseline Implementation Details: For RL-Rewards,
we replace the style reward rSt with explored RL-based gait

TABLE VII: Domain Randomization Settings

Term Value

Observations
angular velocity noise U(−0.3, 0.3) rad/s
joint position noise U(−0.02, 0.02) rad/s
joint velocity noise U(−2.0, 2.0) rad/s
projected gravity noise U(−0.05, 0.05) rad/s
FK noise U(−0.05, 0.05) m

Humanoid Physical Properties
actuator offset U(−0.05, 0.05) rad
motor strength noise U(0.9, 1.1)
payload mass U(−2.0, 2.0) kg
center of mass displacement U(−0.05, 0.05) m
Kp, Kd noise factor U(0.85, 1.15)

Object Dynamics
box friction factor U(0.5, 1.2)
box restitution factor U(0.0, 0.2)
platform friction factor U(0.5, 1.2)

Object Localization
position offset U(−0.05, 0.05) m
position noise U(−0.05, 0.05) m
rotation offset U(−5.0, 5.0)◦

rotation noise U(−5.0, 5.0)◦

TABLE VIII: Hyperparameters

Hyperparameter Value

General
num of robots 4096
num of steps per iteration 100
num of epochs 5
gradient clipping 1.0
adam epsilon 1e− 8

PPO
clip range 0.2
entropy coefficient 0.01
discount factor γ 0.99
GAE balancing factor λ 0.95
desired KL-divergence 0.01
actor and double critic NN MLP, hidden units [512, 256, 256]

PhysHSI
reward coefficient wS (general) 0.3
reward coefficient wG, wR 0.7, 0.7
gradient penalty wgp 1.0
distance threshold ϵ 0.6
AMP discriminator NN MLP, hidden units [512, 256, 256]

Fig. 6: 3D model of the D455 camera bracket.

rewards [55, 57] to regularize the gait during task execution.
The total reward function is formulated as

rRL
t = rGait

t + rRt + rGt , (22)

where rRt and rGt are the same as in PhysHSI. The gait
reward terms are summarized in Table IX.

For Tracking-Based, we employ the tracking reward



TABLE IX: Gait Reward Functions

Term Weight Term Weight

base height −10.0 feet clearance −0.5
z velocity −2.0 feet air time 0.05
roll-pitch velocity −0.05 feet distance 0.5
orientation −1.0 hip joint deviation −0.5

rTrack
t , primarily adapted from [5], together with the reg-

ularization reward rRt . The tracking reward terms are sum-
marized in Table X.

TABLE X: Tracking Reward Functions

Term Weight Term Weight

body position 1.0 base linear velocity 0.5
body rotation 0.5 end-effector position 1.5
base position 1.0 joint position 1.0
base rotation 0.5 object position (Carry Box) 1.0

2) Success Rate Evaluation: The success criteria for each
task are defined as follows:
• Carry Box: The box is placed at the target position with

a distance error of less than 0.1m.
• Sit Down and Lie Down: The robot’s base position is

within 0.1m of the target location, with its heading
aligned to the chair/bed orientation. For Lie Down, the
body direction from head to feet must also be parallel to
the bed, both with a tolerance of 15◦.

• Stand Up: The robot successfully stands up from the chair
with a base height exceeding 0.72m, and then reaches the
target position with a distance error of less than 0.3m.
3) Human-Likeness Score Evaluation: We evaluate the

human-likeness score Shuman using Gemini-2.5-Pro [68].
The model is prompted with task descriptions and experi-
mental trajectories, and outputs a human-likeness score in
the range [0, 5] for each demonstration clip. Below is an
example prompt used for evaluating the Lie Down task:

I will provide you with three videos of a robot
performing a lie-down task, named
LieDown_PhysHSI_1, LieDown_Mimic_1, and
LieDown_RL_1.

Please analyze and compare them based on the
criterion of Naturalness. For this task,
Naturalness is defined by how closely the robot
’s movement resembles a natural, human-like
action. When evaluating, please consider these
specific aspects:

1. Fluidity and Smoothness: Is the motion
continuous, or is it jerky and segmented?

2. Stability and Balance: Does the robot appear
stable and in control, or does it look wobbly
and at risk of falling?

3. Plausibility of Strategy: Does the robot use its
limbs and body in a way a human would (e.g.,
using hands for support, bending knees,
controlled descent)?

Please provide a Naturalness score out of 5 (
decimals are allowed) for each video in a table
. After the scores, write a summary explaining
the key differences and justifying your ratings
based on the aspects mentioned above.
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